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Question Overview of lazy and non-lazy regimes
What is the structure of learned

representations in artificial neural networks? ey GEElITe S96EE e wecker Sl RER:
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Consider fully connected feedforward Laziness contr.ollle.d .by t.he scaling > vector feitfjﬁ‘ ~

. . . of the output at initialization [1-3] ... A
networks in the non-lazy regime which -

enforces strong representation learning. -
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Non-lazy: readout scales its inputs with 1/N random features "

\ after learning the task, f(z)= & Y., aip[z(z)] J 1 P I
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Weights drawn from Bayes posterior non-lazy feature space feature vector alignment

P(O) = % exp [— BL(O) 4+ log PO(@)] N
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Focus: zero temperature limit (B—x) '—: feature

which enforces zero (MSE) loss ... and after learning, i.e., drawn = vector ’

from the weight posterior. a

Theory: number of neurons N, training learned features ©

set size P, and input dimensionality

to infinity at fixed ratio class 1 class 2

Coding schemes (classification)

Here: 3 classes with unequal ratio, orthogonal data.

Salient structure in neural activations,

Geometry of representations (kernel) reflects task

depends strongly on neuronal non-linearity: structure, similar for all neuronal non-linearities:
layer 1 layer 2 layer 3 layer 1 layer 2 layer 3
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Drifting representations Theory (executive summary) Take home

Origin of drift: sampling dynamics. Main result: posterior of readout weights and preactivations factorizes

_ . o across layers and neurons into single-neuron posteriors. Summary: theory of learned representations
Linear: drifting representations in all layers. deep in the feature learning regime.

RelLU: no drift (symmetry breaking). P(a) = N(a|0,U) Gaussian - analog coding
Sigmoidal: no drift in feature layer
(symmetry breaking), drift in lower Iayers: P(ZL ‘ a) — N(ZL ‘ YU_laa KL—l) ) Representations are embedded into
o | | ' P(zg) _ N(zg 0, K) 3 coding schemes in a classification context, the
initial time final time details depend on the neuronal non-linearity.
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Emergence of high-level category-selectivity
L L TtT L
P(z*]a) oc N (2|0, K _q)e? #(=") S~ In the feature layer of a simple neural network.
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neuron
sigmoidal

' reorder Permutation-symmetry breaking controls the
bulk outlier presence or absence of drift during sampling.

P(a) = 0(a — ay) P(a;) = 6(a; — VNa;)

P(z|a) x N(z]0, Kp)e? 't #(2) P(z|a;) = 0(z; — VNZ) Not shown: generalization beyond training
examples and corresponding representations;
MNIST and CIFAR10 examples.
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Important detail: scaling of prior readout weight variance with data set size P.

class 1, 2, 3 Not shown: parameters of single-neuron posteriors detemined self-consistently.
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