A Theoretical Approach to Intrinsic Timescales

in Spiking Neural Networks .
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Introduction IF Networks

o challenge addressed: a theory of temporal autocorre- Network Model Balanced Network
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single unit spiking activity (adapted from (4, Fig. 1d|): . . . s 47 B
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. Pastemak — 1% approximation: output spike train is a renewal process 5 07 e e ™ = Sinulation theory
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L 250 - Wallis : Sketch (A) of a balanced spiking neural network [11] with populations of excitatory
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? 200 Padoa-Schioppa USIVE TILX across e_ €Sho (blue) and inhibitory (red) neurons. A raster plot (B) shows asynchronous irregular
£ — 3 approximation: firing rate does not change due to dynamics with statistically equivalent neurons. The Fourier transform of the autocorre-
é 150 150 O the timescales in the input lation funct.ion, i.(?. the power spefctrum, obtair\ed from our theory (.C, PIaFk I-ine) agrees
£ 1004 100 well with simulations (C, gray line). Accordingly, the predicted intrinsic timescale is
also in good agreement (D).
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C NN ) tical differences between the popula-
Wﬁ) ‘ tions. Spike-train power spectra ob-
b tained from our theory (C, black lines)
m agree well with simulations except for
the peaks around 80 Hz (C, colored

lines). Here, we selected populations

with excellent agreement (layer 4) and
with deviations from the theory (layer
2/3).  Accordingly, the predicted in-
trinsic timescales (D, shaded bars) are
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e aim: coarse grained description, i.e. one (stochastic)
equation per population « instead of one per neuron

.
e intuition: input I} (1) = 71D 5 ;:;v:l W/gﬁxf(t — ngﬁ)
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resembles random process due to randomly weighted sum

oVV,SB = JgﬁKgﬁ contains both the synaptic weights Jgﬁ
and the connectivity matrix Kgﬁ c {0,1}
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titative agreement depends on the con-

sidered population. To account for the
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peaks in the power spectra and the re-

sulting changes in intrinsic timescales,
finite size corrections that take cross-
correlations into account are necessary.
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e formally: input approximated by independent Gaussian pro-

cesses 1 (1) ~ 7 mi'(t) with stationary statistics
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corr.: Co(T) = Z((AWO‘B)2>JNB<$B$B>UB(T) . -
5 Discussion

e substantiated by path-integral methods [5, 6]: characteris-
tic functional — disorder average — Hubbard-Stratonovich
. -8 . . A B Summary
transformation — saddle point approximation (exact for in- -
finite network sizes) s

e for networks of rate units, dynamic mean field theory has
yielded significant insights into the interrelation between
network structure and intrinsic timescales [3, 7, 13]
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Colored Noise Problem O e we extend the results to spiking neural networks

n=10 . . . .

L S r S — leaky integrate-and-fire neurons: theory agrees with sim-
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n(t) 3 z(t) > ——__ .- R, TP ulatlons. in the fluctuation-driven regime | |

> (W > (J In a balanced spiking neural network [11] with populations of excitatory (blue) and —generallzed linear model neurons: exact analytlcal solution
_ o _ _ inhibitory (red) generalized linear model neurons, rate (A) and autocorrelation function enables exp|oration of full parameter space
® given the statistics of the Input 77(75) (I'e' H and Sﬁ(w))' (B) from the theory (black) agree very well with simulations.
what are the statistics of output z(¢) (rate v and S, (w))? o
e generalized linear model neurons: Outlook

e Wiener-Khinchin theorem: spectrum S(w) equals Fourier
transformed autocorrelation function C'(7) e establishing a link between the connectivity and the emer-
gent intrinsic timescales allows for a thorough investigation

of the effect of network architecture

e [eads to self-consistency problem: 5 -1
— dynamic mean-field theory: A(t) = cf exples (VA () — Vi )]

output statistics — input statistics e could be used to fine-tune network models [2] to match the

where A\7'(%) is the intensity of Poisson process x7'(t) experimentally observed hierarchy of timescales

— colored noise problem:

. a o e advantage: colored noise problem analytically solvable
input statistics — output statistics g p y y

e focusing on computational aspects, diverse timescales

e disadvantage: inherently stochastic neuron dynamics strongly enhance the computational capacity [14
e open challenge for many neuron models (but see [7, 8]) & Y Y Y P pacity [14]
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