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Introduction

• challenge addressed: a theory of temporal autocorre-

lations in spiking neural network models

• particular interest: intrinsic timescales, characterized by
single-unit autocorrelation times τc, in network models
with biologically constrained connectivity [1, 2]

• usually investigated in networks of (non-spiking) rate neu-
rons [3], but in vivo electrophysiological recordings in resting
state reveal a hierarchical structure of intrinsic timescales in
single unit spiking activity (adapted from [4, Fig. 1d]):

Methods

Dynamic Mean-Field Theory
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• aim: coarse grained description, i.e. one (stochastic)
equation per population α instead of one per neuron

• intuition: input Iαi,in(t) = ταm
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resembles random process due to randomly weighted sum

•W αβ
ij = J

αβ
ij K

αβ
ij contains both the synaptic weights J
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and the connectivity matrix K
αβ
ij ∈ {0, 1}

• formally: input approximated by independent Gaussian pro-
cesses Iαi,in(t) ≈ ταm ηαi (t) with stationary statistics

mean: µα =
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• substantiated by path-integral methods [5, 6]: characteris-
tic functional → disorder average → Hubbard-Stratonovich
transformation → saddle point approximation (exact for in-
finite network sizes)

Colored Noise Problem

LIFneuron

• given the statistics of the input η(t) (i.e. µ and Sη(ω)),
what are the statistics of output x(t) (rate ν and Sx(ω))?

•Wiener-Khinchin theorem: spectrum S(ω) equals Fourier
transformed autocorrelation function C(τ )

• leads to self-consistency problem:

– dynamic mean-field theory:
output statistics → input statistics

– colored noise problem:
input statistics → output statistics

• open challenge for many neuron models (but see [7, 8])

• numerical solution: fixed-point iteration [9, 10]

Results: IF Networks

Network Model

• leaky integrate-and-fire neurons with exponential current-
based synapses:
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with fire-and-reset mechanism and refractory period

• Erdős-Rényi topology: W
αβ
ij are i.i.d. random variables

with cumulants 〈W αβ〉J , 〈(∆W αβ)
2
〉J , . . .

• external input modeled by Poisson process

• approximate solution of colored noise problem:

– 1st approximation: output spike train is a renewal process

– 2nd approximation: hazard function given by the free dif-
fusive flux across the threshold

– 3rd approximation: firing rate does not change due to
the timescales in the input

Balanced Network
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Sketch (A) of a balanced spiking neural network [11] with populations of excitatory

(blue) and inhibitory (red) neurons. A raster plot (B) shows asynchronous irregular

dynamics with statistically equivalent neurons. The Fourier transform of the autocorre-

lation function, i.e. the power spectrum, obtained from our theory (C, black line) agrees

well with simulations (C, gray line). Accordingly, the predicted intrinsic timescale is

also in good agreement (D).

Structured Network

other background input
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Sketch of the spiking neural network

model with biologically constrained

connectivity which integrates knowl-

edge from more than 50 experimental

papers (A, figure adapted from [1]).

A raster plot (B) shows asynchronous

irregular dynamics with clear statis-

tical differences between the popula-

tions. Spike-train power spectra ob-

tained from our theory (C, black lines)

agree well with simulations except for

the peaks around 80 Hz (C, colored

lines). Here, we selected populations

with excellent agreement (layer 4) and

with deviations from the theory (layer

2/3). Accordingly, the predicted in-

trinsic timescales (D, shaded bars) are

also in good agreement with simula-

tions (D, filled bars) where the quan-

titative agreement depends on the con-

sidered population. To account for the

peaks in the power spectra and the re-

sulting changes in intrinsic timescales,

finite size corrections that take cross-

correlations into account are necessary.

Results: GLM networks
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In a balanced spiking neural network [11] with populations of excitatory (blue) and

inhibitory (red) generalized linear model neurons, rate (A) and autocorrelation function

(B) from the theory (black) agree very well with simulations.

• generalized linear model neurons:

V α
i (t) =

∫
ds κα(t− s)
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where λα
i (t) is the intensity of Poisson process xαi (t)

• advantage: colored noise problem analytically solvable

• disadvantage: inherently stochastic neuron dynamics

Discussion

Summary

• for networks of rate units, dynamic mean field theory has
yielded significant insights into the interrelation between
network structure and intrinsic timescales [3, 7, 13]

•we extend the results to spiking neural networks

– leaky integrate-and-fire neurons: theory agrees with sim-
ulations in the fluctuation-driven regime

– generalized linear model neurons: exact analytical solution
enables exploration of full parameter space

Outlook

• establishing a link between the connectivity and the emer-
gent intrinsic timescales allows for a thorough investigation
of the effect of network architecture

• could be used to fine-tune network models [2] to match the
experimentally observed hierarchy of timescales

• focusing on computational aspects, diverse timescales
strongly enhance the computational capacity [14]
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