
An even more mathematically offensive introduction to SDEs:
a bag of tricks and analytical solutions

Alexander van Meegen

A guided tour through the marvelous world of SDEs. Although SDEs might bite if you touch
them in the wrong spots, they are usually quite nice and fun to play with. Since the dangerous
parts are frequently and adequately addressed, the focus of this text is on the fun part—solving
problems. Ideally, the tour sparks your interest and causes some further expeditions on your own.
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II WHITE NOISE

I. INTRO

We consider stochastic differential equations (SDEs), i.e., differential equations

ẋ = f(x) + g(x)ξ(t) (1)

where ξ(t) is a stochastic process or, more colloquially, noise. In most cases, ξ(t) is a zero-
mean ⟨ξ(t)⟩ = 0, white ⟨ξ(t)ξ(t′)⟩ = 2Dδ(t − t′), Gaussian process—a Gaussian white noise
(GWN)—but we will go beyond this case.

The SDE is called additive if g(x) is constant and multiplicative otherwise. Additive processes
are simpler because the strength of the noise does not depend on the state of the system.

Since ξ(t) is a stochastic process, the goal is to determine the statistics of the process x(t).
More concretely, the mean and autocorrelation function

µx(t) = ⟨x(t)⟩ Cx(t, t
′) = ⟨(x(t)− µx(t))(x(t

′)− µx(t
′))⟩ (2)

are usually the most relevant quantities. In stationary (time translation invariant) cases where
µx(t) is constant and Cx(t, t

′) = Cx(t
′ − t), the power spectrum Sx(f) = limT→∞

⟨x̃(f)x̃(f)∗⟩
T

with x̃(f) =
∫ T

0
e2πiftx(t)dt is another central quantity of interest. Power spectrum and auto-

correlation function are their mutual Fourier transform,

Sx(f) =

∫ ∞

−∞
e2πifτCx(τ)dτ, (3)

which is known as the Wiener-Khinchin theorem. Of course one can invert Eq. (3) to get Cx(τ)
from Sx(f).

II. WHITE NOISE

In this entire section, ξ(t) is a GWN, i.e., ⟨ξ(t)ξ(t′)⟩ = 2Dδ(t − t′), which simplifies the
problem quite a bit because we can solve the SDE for given initial conditions without taking the
history into account—the problem is Markovian.

A. Preliminaries

Before diving into the calculations, we have to briefly talk about one spot were SDE do bite.

Fokker-Planck Equation

To fully determine the statistics beyond mean and correlation function, one considers the
time-dependent distribution Pt(x) which obeys a partial differential equation, the Fokker-Planck
equation (FPE)

∂tPt(x) = −∂xJt(x), Jt(x) = A(x)P − 1

2
∂xB(x)P, (4)

with B(x) > 0 [1, chapter IX.4]. Eq. (4) has the form of a continuity equation with probability
flux Jt(x) where A(x) determines the drift and B(x) the diffusion.
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A Preliminaries II WHITE NOISE

Considering the FPE is in principle advantageous because it does not leave room for
ambiguities—after all, Pt(x) fully determines the statistics. This forces us to talk about the
Ito-Stratonovich dilemma: In Ito interpretation, i.e., discretizing Eq. (1) as

x(t+∆t)− x(t) = f(x(t))∆t+ g(x(t))

∫ t+∆t

t

ξ(s)ds,

the flux of the corresponding FPE is [1, chapter IX.4]

Jt(x) = f(x)P −D∂xg(x)
2P ; (5)

in Stratonovich interpretation, i.e., discretizing Eq. (1) as

x(t+∆t)− x(t) = f(x(t))∆t+ g(1
2
x(t) + 1

2
x(t+∆t))

∫ t+∆t

t

ξ(s)ds,

the flux of the corresponding FPE is [1, chapter IX.4]

Jt(x) = [f(x) +Dg(x)g′(x)]P −D∂xg(x)
2P. (6)

Thus, the two interpretations differ by the spurious drift term Dg(x)g′(x) in Eq. (6). This
means we can switch between the interpretations at the expense of changing the drift term or,
equivalently, f(x). Looking at the spurious drift, we see immediately that it vanishes for additive
processes where g(x) is constant—there is no Ito-Stratonovich dilemma for additive processes.
For a more extensive discussion see [1, chapter IX.5].

In the following, we avoid the FPE as much as possible since partial differential equations are
nastier beasts than ordinary differential equations. The canonical reference for everything related
to the FPE is [2].

Changing Variables

The Ito-Stratonovich dilemma arises for multiplicative processes. There seems to be a neat
way around it if g(x) > 0: Dividing ẋ = f(x) + g(x)ξ(t) by g(x) and using the transformation
dy = dx

g(x)
, we get the additive, unambiguous SDE

ẏ =
f(x(y))

g(x(y))
+ ξ(t). (7)

Where did the dilemma go? It turns out that if one transforms variables like this, one implicitly
opted for the Stratonovich interpretation [1, chapter IX.4]. If we interpret the SDE in Ito con-
vention, we first have to subtract the spurious drift to obtain the equivalent SDE in Stratonovich
interpretation, ẋ = f(x) − Dg(x)g′(x) + g(x)ξ(t). Now we can divide by g(x) and change
variables to arrive at

ẏ =
f(x(y))

g(x(y))
−Dg′(x(y)) + ξ(t). (8)

Thus, one gets a counter-intuitive additional term when transforming variables in Ito convention.
The upshot is that in both interpretations one can transform a multiplicative SDE into an additive
one and hence it is sufficient to consider additive SDEs.
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Let’s look at a simple example: geometric Brownian motion, ẋ = (µ + ξ(t))x. We want
to transform y = lnx since dy = dx/x. In Ito interpretation, we get ẏ = µ − D + ξ(t); in
Stratonovich interpretation, we get ẏ = µ+ ξ(t).

Just for completeness, for an arbitrary transformation dy = ϕ(x)dx or y = Φ(x), the trans-
formed SDE in Stratonovich convention behaves as expected [1, chapter IX.4],

f(x) → ϕ(x)f(x), g(x) → ϕ(x)g(x), (9)

whereas one gets an additional term in Ito convention [1, chapter IX.4],

f(x) → ϕ(x)f(x) +Dg(x)2ϕ′(x), g(x) → ϕ(x)g(x). (10)

In both cases, one evaluates x = Φ−1(y) after the transformation.

B. Ornstein-Uhlenbeck Process

The Ornstein-Uhlenbeck process (OU process) is the most simple SDE corresponding to the
choice f(x) = −γx and g(x) = 1,

ẋ = −γx+ ξ(t), (11)

where ξ(t) is a zero-mean GWN with ⟨ξ(t)ξ(t′)⟩ = 2Dδ(t − t′). Note that we don’t need to
consider a constant term µ on the r.h.s. because we can transform γx − µ → γx. The most
intuitive picture is an overdamped motion in a potential U(x) = γ

2
x2.

Greens Function Approach

Assuming fixed initial conditions x0 and a fixed realization of ξ(t), we can write down the
solution of Eq. (11) since Kindergarten [1, chapter IX.1],

x(t) = x0e
−γt +

∫ t

0

e−γ(t−s)ξ(s)ds. (12)

A formal argument for Eq. (12) is that G(t) = Θ(t)e−γt is the Greens function of the differential
operator γ + ∂t and the solution follows as x(t) =

∫
G(t − s)[x0δ(s) + ξ(s)Θ(s)]ds. From

Eq. (12), we immediately get

µx(t) = x0e
−γt +

∫ t

0

e−γ(t−s)⟨ξ(s)⟩ds = x0e
−γt (13)

because ξ(t) is zero mean. With ∆x(t) = x(t)− µx(t) =
∫ t

0
e−γ(t−s)ξ(s)ds, we find

Cx(t, t
′) =

∫ t

0

∫ t′

0

e−γ(t−s)e−γ(t′−s′)⟨ξ(s)ξ(s′)⟩ds′ds = 2De−γ(t+t′)

∫ min(t,t′)

0

e2γsds

where we used ⟨ξ(t)ξ(t′)⟩ = 2Dδ(t− t′) in the second equality. Evaluating the final integral, we
get

Cx(t, t
′) =

D

γ
(e−γ(t+t′−2min(t,t′)) − e−γ(t+t′)). (14)
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Figure 1. OU process with γ = 0.5 and D = 0.005 and initial condition x0 = 1.

This looks a bit odd, it can be made a lot friendlier if we break the symmetry of the time
arguments and set t′ = t+ τ with τ ≥ 0:

Cx(t, t+ τ) =
D

γ
e−γτ (1− e−2γt)

t→∞→ D

γ
e−γτ . (15)

We of course also get the time-dependent variance from Eq. (14),

σ2
x(t) =

D

γ
(1− e−2γt). (16)

Eq. (13) and Eq. (14) fully solve the problem because Eq. (11) is linear and ξ(t) Gaussian and
hence x(t) is Gaussian as well. Hence, we can also write down the time-dependent distribution
and its stationary limit

Pt(x) = N (x |µx(t), σ
2
x(t))

t→∞→ N (x | 0, D/γ) (17)

which indeed fulfills the associated FPE.
Conveniently, we also solved the Wiener process ẋ = ξ(t) because it follows from γ → 0.

Taking the limit in Eq. (13) and Eq. (14) leads to µx(t) = x0 and Cx(t, t
′) = 2Dmin(t, t′). We

see immediately that the Wiener process cannot become stationary; it never forgets the initial
conditions and its variance σ2

x(t) = 2Dt diverges.

Fourier Transformation Approach

If we are only interested in the stationary statistics, there is a much faster route: the method
of Rice [3]. Taking the Fourier transformation of ẋ = −γx+ ξ, using partial integration for the
velocity term

∫ T

0
e2πiftẋ(t)dt = [e2πiftx(t)]T0 −2πif

∫ T

0
e2πiftx(t)dt, and neglecting the boundary

term [e2πiftx(t)]T0 for large T [4], we get

(γ − 2πif)x̃ = ξ̃.

Multiplying with the complex conjugate and taking the average, we get

(γ2 + (2πf)2)⟨x̃x̃∗⟩ = ⟨ξ̃ξ̃∗⟩.
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Figure 2. Power spectra of OU process and harmonic oscillator for γ = 0.5 and D = 0.005.

Both averages are proportional to the respective power spectrum; using the Wiener-Khinchin
theorem to determine Sξ(f) =

∫∞
−∞ e2πifτ2Dδ(τ)dτ = 2D we arrive at

Sx(f) =
2D

γ2 + (2πf)2
. (18)

Indeed, this is the Fourier transformation of Eq. (15), Cx(τ) =
D
γ
e−γ|τ |.

C. Other Linear Processes

Harmonic Oscillator

Both methods generalize quite well to arbitrary linear processes. First, we consider the noise-
driven harmonic oscillator

ẍ+ γẋ+ ω2x = ξ(t). (19)
This does not look like Eq. (1) but introducing ẋ = v such that v̇ = −γv−ω2x+ξ(t) immediately
brings us back there, although the system is now two dimensional. We focus on the stationary
statistics and use again the Fourier approach. Neglecting once again the boundary terms, we get

(ω2 − 2πiγf − (2πf)2)x̃(f) = ξ̃(f).

Multiplying with the complex conjugate and taking the average yields [3]

Sx(f) =
2D

(ω2 − (2πf)2)2 + (2πγf)2
. (20)

Of course, we could also calculate the nonstationary statistics. Note that to this end, we need
to specify x0 and v0 to fully determine the initial conditions.

General Linear Process

Let’s generalize further an allow an arbitrary Greens function G(t),

x(t) =

∫
G(t− s)ξ(s)ds, (21)

and stick to the stationary statistics. Fourier transformation and neglecting boundary terms yields
x̃(f) = G̃(f)ξ̃(f) which leads to

Sx(f) = 2D|G̃(f)|2. (22)
In principle, the G(t) does not have to be a causal Greens function but could be an arbitrary
filter here.
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Figure 3. Stationary distribution (gray) for two potentials (black): monostable U(x) = x2 and bistable
U(x) = (x− 1)2(x+ 1)2 + 0.1x. For D = 0.1 (solid), D = 0.5 (dashed), and D = 0.05 (dotted).

D. Nonlinear Processes

Enough linear processes, let’s enter the exciting nonlinear world and consider SDEs of the
form

ẋ = −∂xU(x) + ξ(t), (23)

i.e., overdamped motion in a potential U(x) driven by GWN. We don’t consider multiplicative
processes because we can transform them to additive ones and we assume that a potential
f(x) = −∂xU(x) exists because this provides a better intuition and simplifies the formulas.

Compared to the linear version, x(t) is not Gaussian anymore although ξ(t) is. Thus, the
higher cumulants don’t vanish anymore.

Stationary Distribution

Determining the stationary distribution is surprisingly easy [1, Chapter XIII.1]: In this case,
∂tP (x) = 0 and the FPE reduces to ∂xJ(x) = 0. The flux corresponding to Eq. (23) is
J(x) = −U ′(x)P −D∂xP ; setting J(x) = 0 leads to ∂xP (x) = − 1

D
U ′(x)P (x) and thus

P (x) = Ce−U(x)/D (24)

with C determined by normalization
∫
P (x)dx = 1. This of course requires

∫
e−U(x)/Ddx < ∞.

See Fig. 3 for two examples.
A quick consistency check with the Ornstein-Uhlenbeck process: Setting U(x) = 1

2
γx2, we

get P (x) = C exp(−γx2/2D) = N (x | 0, D/γ) in agreement with Eq. (17).
Despite the focus on the technical part, Eq. (24) entails an important physical interpretation

that we briefly discuss. The equilibrium distribution in statistical mechanics is the Boltzmann
distribution P (p, q) ∝ exp(−H(p, q)/kBT ). The momenta and positions decouple, hence we
can integrate the momenta out. For a non-interacting system, this also holds for the positions;
doing so for all but one leads to P (q) ∝ exp(−U(q)/kBT ) and thus

D = kBT, (25)

the Einstein relation (with the constant mobility absorbed in the potential).

First-Passage Time

Next, we consider first-passage problems, i.e., the time that a process stays within a certain
domain. There is a wide variety of approaches and a lot can be written about it; here we follow

7
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the arguably most simple approach, the flux-over-population method [5, Section IV.E]. The setup
is a process constrained to the domain (−∞, xb] and we are interested in the mean first-passage
time τ from a point xr within the domain to xb (see Fig. 4).

For the flux-over-population method, we first alter the problem and introduce a demon which
resets the process to xr after it crossed the boundary. Now we wait until the situation becomes
stationary; due to the resetting, a constant probability flux J between xr and xb emerges.
According to the flux-over-population method, we can calculate the mean first passage time as

τ =
N0

J
(26)

where N0 =
∫ xb

−∞ P (x)dx is the population. To obtain P (x), we consider the domains (−∞, xr]
and [xr, xb] separately, starting with the latter. For a constant flux J , the stationary FPE yields
−U ′(x)P −D∂xP = J . Based on the J = 0 solution Eq. (24), we make the ansatz P>(x) =
C>(x) exp(−U(x)/D). This leads to C ′

>(x) = − J
D
exp(U(x)/D) which we can integrate.

Taking the boundary condition P>(xb) = 0 into account, we get C>(x) =
J
D

∫ xb

x
exp(U(y)/D)dy

and thus

P>(x) =
J

D
e−U(x)/D

∫ xb

x

eU(y)/Ddy.

In the other domain, the flux vanishes such that we get P<(x) = C< exp(−U(x)/D). The
constant C< is determined by continuity, P<(x → xr) = P>(x → xr), and we arrive at

P<(x) =
J

D
e−U(x)/D

∫ xb

xr

eU(y)/Ddy.

Now, all we have to do is to evaluate N0 =
∫ xr

−∞ P<(x)dx +
∫ xb

xr
P>(x)dx and, by virtue of

Eq. (26), we get

τ =
1

D

∫ xr

−∞
e−U(x)/D

∫ xb

xr

eU(y)/Ddydx+
1

D

∫ xb

xr

e−U(x)/D

∫ xb

x

eU(y)/Ddydx.

This clunky expression can be simplified to

τ =
1

D

∫ xb

xr

eU(x)/D

∫ x

−∞
e−U(y)/Ddydx (27)

by changing the order of integration and renaming x ↔ y. If you don’t trust demons: one can
derive Eq. (27) from the Kolmogorov backward equation [1, chapter XII.3].

Considering once again the Ornstein-Uhlenbeck process with U(x) = 1
2
γx2, we can solve the

inner Gaussian integral in Eq. (27) and arrive after a substitution at

τ =

√
π

γ

∫ √
γ
2D

xb

√
γ
2D

xr

ex
2(
1 + erf(x)

)
dx, (28)

the infamous Siegert.
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Figure 4. First passage problems for differen systems: monostable U(x) = x2, unstable U(x) =

−(x− 1)x(x+ 1), and bistable U(x) = (x− 1)2(x+ 1)2 + 0.1x.

Unstable and Bistable Systems

Now let’s consider specific potentials. Before diving into the math, we take a step back and
think about what we would like to achieve. Let’s focus on two examples: 1) An unstable system
with a metastable state and an abyss. Due to the noise, the system will eventually leave the
metastable state and end up in the abyss. 2) A bistable system with two minima. Due to the
noise, the system will transition between these minima. In both case, want the the barrier to be
high enough to separate the states; the relevant question is how long it takes until the system
leaves one state and either falls into the abyss or transits to the other state (see Fig. 4).

First, let’s consider the unstable potential with a minimum at U(xa), a maximum at U(xb)
with xb > xa, and an abyss to the right, e.g., a cubic potential. Once the maximum is passed,
the system almost has no chance to escape the abyss. Thus, the time spent in the metastable
state can be approximated by the first passage time from a point before the minimum to a point
slightly behind the maximum. With the noise being small, 1/D ≫ 1, we can approximate the
integrals in Eq. (27) using the Laplace approximation to get [1, chapter XIII.2]

τ =
2π√

U ′′(xa)|U ′′(xb)|
exp

(
[U(xb)− U(xa)]/D

)
. (29)

The leading exponential term is the Arrhenius factor : the first-passage time (or inverse rate)
depends exponentially on the height of the potential barrier ∆U = U(xb) − U(xa) relative to
the noise strength D.

Next, the bistable case with two minima at U(xa) and U(xc) separated by a barrier with
maximum at U(xb). The main obstacle is to climb the maximum; thus, the transition time is
approximately equal to the first passage time to from a minimum to slightly behind the maximum.
Again using a Laplace approximation for the first passage time from the minimum at xa, τa, and
from the minimum at xc, τc, the ratio of the transition times is [1, chapter XIII.1]

τc
τa

=

√
U ′′(xa)

U ′′(xc)
exp

(
[U(xa)− U(xc)]/D

)
. (30)

This time, the difference in the depth of the minima ∆U = U(xa)− U(xc) relative to D is the
decisive factor.

III. COLORED NOISE

Colored noise problems are entirely different beasts—the innocuous change to a finite auto-
correlation time of ξ(t) has quite a bit of impact [1, chapter IX.7]. One immediate consequence

9
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is that we need to specify carefully how the system was prepared. In the white noise case, we
can simply fix the initial condition x0 and the problem is fully specified because the driving noise
does not remember its past. However, as soon as the noise has a memory, we need to specify
the shared history of noise and system; the most simple history is to assume that x and ξ are in-
dependent. In other cases, the history leads to correlations which need to be taken into account.
Of course this becomes irrelevant if one considers the stationary situation in which all details of
the preparation are forgotten.

A. Stationary Linear Processes

Since we can forget about the preparation in the stationary case, let us first focus on this case.
Furthermore, we also consider linear processes x(t) =

∫
G(t − s)ξ(s)ds to make our lives even

more easy. In contrast to Eq. (21), ξ(t) is now a zero-mean Gaussian process with stationary
correlation function Cξ(τ) and corresponding power spectrum Sξ(f). Conveniently, the Fourier
transformation approach immediately generalizes: From x̃(f) = G̃(f)ξ̃(f), we get [6, appendix
A.19]

Sx(f) = |G̃(f)|2Sξ(f). (31)

Inserting the white noise spectrum Sξ(f) = 2D leads us back to Eq. (22).

B. Markovian Embedding

To go beyond the stationary regime, let us consider the SDE ẋ = f(x) + η(t) where η(t) is
an OU process, i.e., a process with a purely exponential autocorrelation function. We already
know that the OU process obeys Eq. (11), hence we can rewrite the process as

ẋ = f(x) + η, τcη̇ = −η +
√

2σ2
ητcξ(t), (32)

where ξ(t) is a zero-mean, unit-strength GWN and we chose the parameters such that the
autocorrelation time of ξ is τc and its stationary variance σ2

ξ . Although we started with a
non-Markovian problem, we managed to convert it to a Markovian one by extending the state
space—this is the idea of a Markovian embedding [7]. We already saw something very similar
for the harmonic oscillator where we pulled the usual trick of rewriting a second-order differential
equation as two coupled first-order differential equations. Since we are back at the Markovian
level, we can fully specify the preparation of the system by fixing x0 and η0.

Of course, we are not restricted to OU process. We could for example assume that η(t) is
a noise-driven harmonic oscillator and end up with a three-dimensional state space. For more a
more intricate example, see [8].

C. Kubo Oscillator

Let’s finish with one of the few analytically solvable colored noise problems [7]: The Kubo
oscillator

ẋ = i[ω + ξ(t)]x. (33)

10
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Why is it called an oscillator? If we separate x = ℜ(x) + iℑ(x) and disregard the noise, we
recover the familiar harmonic oscillator ℜ(ẍ) = −ω2ℜ(x). Note that Eq. (33) is not equivalent
to ℜ(ẍ) = −(ω + ξ(t))2ℜ(x)!

The easiest way forward is to transform x = eiθ with dx/x = idθ; this leads to θ̇ = ω + ξ(t)

which is straightforward to integrate to θ(t) = θ0 + ωt +
∫ t

0
ξ(s)ds. Here, we assumed a

correlation-free preparation. Inserting into x = eiθ and averaging leads to

µx(t) = x0e
iωt⟨ei

∫ t
0 ξ(s)ds⟩ = x0e

iωt− 1
2

∫ t
0

∫ t
0 Cξ(s,s

′)ds′ds (34)

where we used the characteristic functional of ξ(t) in the second step and defined x0 = eiθ0 .
With the same trick, we can also compute the second moment:

⟨x(t+ τ)x∗(t)⟩ = eiωτ ⟨ei
∫ t+τ
t ξ(s)ds⟩ = eiωτ−

1
2

∫ t+τ
t

∫ t+τ
t Cξ(s,s

′)ds′ds. (35)

Let’s take a moment and appreciate the two closed-form analytical solutions valid for arbitrary
correlation functions Cξ.

For concreteness, let us assume an exponential autocorrelation, Cξ(τ) = σ2
ξe

−τ/τc . Calculating
the double integral in the exponent, we get

∫ t

0

∫ t

0
Cξ(s − s′)ds′ds = 2σ2

ξτc[t − τc(1 − e−t/τc)].
Inserting this into Eq. (34), we arrive at

|µx(t)| = e−σ2
ξτc[t−τc(1−e−t/τc )] ∼

{
e−σ2

ξτct τc → 0

e−
1
2
σ2
ξ t

2

τc → ∞

where we took the absolute value to discard the boring contributions. We see a weird effect:
The mean decreases with time and it does so very rapidly for long correlation times.

The Kubo oscillator can apparently be related to the line shape of resonances [1, chapter
XVI.1]. It is also very useful for dynamical mean-field theory of oscillatory units [9].

IV. MISCELLANEOUS

A. Path Integrals

Having reached the miscellanea, we can now discuss an arcane topic: path integrals. Concep-
tually they are very nice because they consider the entire process with its corresponding statistics.
However, compared to the methods above, their practical value is limited.

Probability Density Functional

The first thing we would like to do is to measure the probability of a realization of a stochastic
process. Let’s consider the most simple case first, the Wiener process Ẇ = ξ(t). Integrating
over a short period ∆t = ti − ti−1, we get the Wiener increments Wi − Wi−1 =

∫ ti
ti−1

ξ(s)ds

which are by construction independent, zero-mean Gaussian with variance 2D∆t. Thus, the joint
density of N such Wiener increments starting from W0 is

PW (W1, . . . ,WN |W0) =
N∏
i=1

(
1√

4πD∆t

)
exp

(
− 1

4D∆t

N∑
i=1

(Wi −Wi−1)
2

)
. (36)

11
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Now we fix T = N∆t and let ∆t shrink and N grow proportionally. Informally taking the limit

∆t → 0, we rewrite the sum in the exponent as
∑N

i=1 ∆t
(

Wi−Wi−1

∆t

)2
→
∫ T

0
Ẇ 2dt and arrive at

our first probability density functional (PDF)

PW [W ] = C exp

(
− 1

4D

∫ T

0

Ẇ 2dt

)
(37)

where we lumped the multiplicative prefactor into the constant C.
A SDE is nothing but a transformation of the stochastic process ξ to the stochastic process

x = x[ξ]. Thus, we expect that their respective PDFs are related by Pξ[ξ]Dξ = Px[x]Dx.
We already found the PDF of ξ since Ẇ = ξ is linear such that the Jacobian is not relevant:
Pξ[ξ] = C exp(− 1

4D

∫ T

0
ξ2dt). All that’s left to calculate to get Px[x] = Dξ

Dx
Pξ[ξ[x]] is the

Jacobian. For the SDE ẋ = f(x) + ξ(t), the Jacobian turns out to be exp(−1
2

∫ T

0
f ′(x)dt) and

we get [10]

P [x] = C exp

(
− 1

4D

∫ T

0

[
(ẋ− f(x))2 + 2Df ′(x)

]
dt

)
. (38)

Curiously, the Jacobian does depend on the discretization although there is no Ito-Stratonovich
dilemma for additive processes: The above result holds in Stratonovich discretization; in Ito
discretization the Jacobian is one. Going back to the respective underlying discretization, it can
be shown that the difference is irrelevant [10], as it should be. Again, the advantage of the
Stratonovich discretization is that the simple transformation rule Pξ[ξ]Dξ = Px[x]Dx holds [10].

Having determined the PDF, we can now calculate things—for example the transition proba-
bility,

PT (xf ) =

∫ xf

x0

DxP [x], (39)

by integrating over all paths that obey the initial condition x(0) = x0 and end at x(T ) = xf .
A problem is that the constant C is infinite in the limit ∆t → 0. This can be fixed by

considering ratios of PDF’s: Dividing P [x] by PW [x], which is equivalent to the corresponding
Radon-Nicodim derivative, we get

dP

dPW

[x] = exp

(
− 1

4D

∫ T

0

[
f(x)2 − 2ẋf(x) + 2Df ′(x)

]
dt

)
. (40)

Apparently, Eq. (40) is a direct consequence of the Ghirsanov theorem [10], which would put all
of this on solid mathematical footing.

Ornstein-Uhlenbeck Process

To drive the point of the comparably little practical value home, let’s solve the OU proces
using path integrals. With f(x) = −γx and using 2γ

∫ T

0
ẋxdt = γ[x2]T0 , we get from Eq. (38)

the PDF

PT (xf ) = Ce−
γ
4D [x2

f−x2
0]
∫ xf

x0

Dx e−
1

4D

∫ T
0 [ẋ2+γ2x2]dt (41)

12
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where we absorbed the constant contribution from the Jacobian in C. To solve the path integral,
we expand the path around the most likely path x∗, i.e., x = x∗ + δx with δx(0) = δx(T ) = 0,
and make a linear shift of the integration variable x → δx. Since the exponent is quadratic, there
are only three types of terms: 1) terms quadratic in x∗ and independent of δx which we can
pull out of the integral, 2) mixed terms which vanish by definition of x∗, and 3) terms quadratic
in δx and independent of x∗. Since δx does not depend anymore on xf and x0, the remaining
integral with an exponent quadratic in δx can be absorbed in C and we arrive at

PT (xf ) = Ce−
γ
4D [x2

f−x2
0]e−

1
4D

∫ T
0 [ẋ2

∗+γ2x2
∗]dt.

All that’s left is to find the most likely path x∗. To this end, we identify the integrand in the
exponent as a Lagrangian and consider the associated Euler-Lagrange equation:

L(ẋ, x) = ẋ2 + γ2x2
d
dt

∂L
∂ẋ

= ∂L
∂x⇒ ẍ∗ = γ2x∗. (42)

With the ansatz x∗(t) = Aeγt +Be−γt and a bit of annoying manipulations, we get the solution

x∗(t) =
sinh(γt)

sinh(γT )
xf +

sinh(γ(T − t))

sinh(γT )
x0 (43)

which obeys the boundary conditions due to sinh(0) = 0. Now we need to plug x∗ into the
integral; fortunately we don’t have to solve the integral since

∫ T

0
L(ẋ∗, x∗)dt = [ẋ∗x∗]

T
0 due to

the Euler-Lagrange equation. Inserting this, we arrive after further manipulations at

PT (x) = Ce
−

x2f−2xfx0e
−γT+...

2D
γ (1−e−2γT )

which corresponds to a Gaussian with mean x0e
−γT and variance D

γ
(1 − e−2γT ) in agreement

with Eq. (17).

Escape Paths

To end with an example where path integrals shine, let us consider a problem where their
global view on the process is necessary: determining the most likely path the leads out of a
metastable state, the escape path. We consider the SDE ẋ = −U ′(x) + ξ(t) corresponding to
overdamped, noisy motion in the potential U(x). The corresponding PDF follows from Eq. (38)

PT (xf ) = Ce−
1

2D [U(xf )−U(x0)]
∫ xf

x0

Dx e−
1

4D

∫ T
0 [ẋ2+U ′(x)2]dt+ 1

2

∫ T
0 U ′′(x)dt (44)

where we used
∫ T

0
ẋU ′(x)dt = [U(x)]T0 and separated the Jacobian for convenience. For small

noise D ≪ 1, 1
4D

∫ T

0
[ẋ2 + U ′(x)2] dt dominates the exponent such that the relevant Langrangian

for the most likely path and the associated Euler-Lagrange equation are [11]

L(ẋ, x) = ẋ2 + U ′(x)2
d
dt

∂L
∂ẋ

= ∂L
∂x⇒ ẍ∗ = U ′(x∗)U

′′(x∗). (45)

Solving the Euler-Lagrange equation with the boundary conditions x∗(0) = x0 and x∗(T ) = xf

yields the escape path.
Whether or not we are able to determine the escape path depends on the potential and our

ability to solve the corresponding boundary value problem. Conveniently, we already considered
the case U(x) = γ

2
x2 above, leading to Eq. (43). Thus, Eq. (43) provides the most likely path

of the voltage of a LIF neuron to the threshold deep in the noise-driven regime.

13
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