Saddle-point approximations for matrix integrals:
the curious case of the Wishart distribution

Alexander van Meegen

As a minimal application of the saddle-point approximation for matrix integrals we try to derive
the Wishart distribution from its characteristic function using a saddle-point approximation.

A Wishart matrix M € RP*F can be written as M = X "X where the elements of X €
RN*F are zero-mean Gaussian with (2,,,2n,) = 6,mC,. The corresponding distribution over
symmetric positive definite (denoted by M > 0) matrices is [1, (3.2.1)]

N-P-1

2

P(M) = % det(M)

where we need N > P to ensure C' > 0. The corresponding characteristic function is [1, (3.3.9)]

exp ( - gtr C’1M> (1)

(1) = det (I - %MC) : 2)

which is straightforward to derive from ®(M) = (ev M X7 X) ¢ by solving the Gaussian integral.
Since M is symmetric, it has P(P 4 1)/2 degrees of freedom; to match the number of degrees
of freedom of the characteristic function we assume that M is symmetric as well.

Leading order

Eq. (1) and Eq. (2) are related by the inverse transformation
P(M) x /dMe-mMTM@(M). (3)

Using the characteristic function we now derive Eq. (1) using a saddle-point approximation of
the integral in Eq. (3) for large N >> 1 and P >> 1. First, we rescale —iM — NM leading to

P(M) / AN e~ 2500 §(NI) = logdet(Ip + MC) — tr M T M. (4)

The scaling of the exponent with N suggests a saddle-point approximation. To this end, we
center the integral at S’(M,) = 0 and decompose M = M, + \ﬁA The saddle-point equation
S'(M.,) = 0 for the above action yields

M = C(Ip + M,C)™* = M,=M"'-C! (5)

where we used M > 0 and C' > 0. Using S( +) = —logdet(M) +tr(C~" M) + const, changing
the integration M — A, and expanding S(M) around M, we arrive at

P(M) ox det(A)Fe 300 [ g gt (6)
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we see that neglecting the remaining integral amounts to det(M)™ 2 ~ det(M)* which is a

good approximation if N > P.



Fluctuation correction

However, if P is of the same order of magnitude we need to take the fluctuations A into
account. We do so to leading order, i.e., we expand

_ BINFZUAE S VAN S o S SNSRI
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and neglect the terms for [ > 1. The second derivative of the action is

~ ~ _ ~ _ M= ~*
S;ljluzug;u(M) = _Cuwl (IP + MC)V11,u3CM4V2 (IP + MC)VQIMQ = _MMMsMMuQ (8)
and thus A%S"(M,) = = roin D A pipis My s My, = — tr(MAMA). To solve the

integral we diagonalize M = UAU" (recall M > 0) and change variables UTAU — —iA,
leading to

I(M) x /dA -1 tr(A8AL) (1 +) (9)

because the orthogonal transformation has a unit Jacobian and the imaginary unit cancels with the
one introduced earlier with —iM — 5 M. We make a last change of variables A — A~1/2AA~1/2
which makes the integral (to leading order) independent of M such that we only need the
Jacobian. This requires care because A is symmetric, using [1, (1.3.5)] we arrive at

I(M) o det(A~1/2)P+1 (1 . ) — det(M)~ "+ (1 ¥ ) (10)

Inserting I(M) into Eq. (6) we obtain Eq. (1) exactly.

We succeeded to derive the Wishart distribution from its characteristic function using a saddle-
point approximation with fluctuation corrections. It is surprising that this is possible because we
neglected higher-order terms in I(M) (this is reminiscent of a similar effect happening for the
chi-square distribution [2]). Roughly it seems what happens is that the Gaussian expectation
of AF generates terms containing M % while S*)(M,) generates terms containing M* which
annihilate each other at all orders such that the corrections do not depend on M.
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